Journal of Organometallic Chemistry, 394 (1990) 643-658 Elsevier Sequoia S.A., Lausanne JOM 20713

Polynuclear homo- or heterometallic palladium(II)-platinum(II) pentafluorophenyl complexes containing bridging diphenylphosphido ligands. Synthesis and crystal structure of $[(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(phen)]$ *

J. Forniés, C. Fortuño, R. Navarro,

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain)

F. Martínez and A.J. Welch

Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ (U.K.)

(Received December 18th, 1989)

Abstract

The binuclear anionic derivatives $(NBu_4)_2[(C_6F_5)_2M(\mu-PPh_2)_2M'(C_6F_5)_2]$ (M = M' = Pd, 1; M = M' = Pt, 2; M = Pd, M' = Pt, 3) have been obtained by treating either $(NBu_4)_2[(C_6F_5)_2M(\mu-X)_2M'(C_6F_5)_2]$ (X = Cl, Br) with LiPPh₂ (1,2) or [cis- $M(C_6F_5)_2(PPh_2)_2]^{2-1}$ with $M'(C_6F_5)_2(THF)_2$ (1,2,3). These binuclear derivatives react with HCl yielding the tetranuclear complexes $(NBu_4)_2[(C_6F_5)_2M(\mu PPh_2_2M'(\mu-Cl)_2M'(\mu-PPh_2)_2M(C_6F_5)_2$] (7: M = M' = Pt; 8: M = M' = Pd; 9: M = Pt, M' = Pd). However, 2 and 3 react with HCl in the presence of PPh₁ to yield the binuclear asymmetric complexes $(NBu_4)[(C_6F_5)_2M(\mu-PPh_2)_2M'(C_6F_5)(PPh_3)]$ (10: M = M' = Pt; 11: M = Pt, M' = Pd). The tetranuclear complexes 7, 8, and 9 react with bidentate ligands yielding the neutral asymmetric binuclear complexes $[(C_{\kappa}F_{\kappa})_{2}M(\mu-PPh_{2})_{2}M'(L-L)]$ (5: M = M' = Pt; L-L = dppm; 12: L-L = phen; 13: M = M' = Pd, L-L = bipy). The salts $Li_2[M(C_6F_5)_2(PPh_2)_2]$ (M = Pd, Pt) react with PtCl₂(dppm), [Pt(μ -Cl)(C₆F₅)(tht)]₂ or PtCl₂ to yield [(C₆F₅)₂M(μ -PPh₂)₂Pt-(dppm)] (4: M = Pd; 5: M = Pt), (NBu₄)[(C₆F₅)₂Pt(μ -PPh₂)₂Pt(C₆F₅)(tht)] (6) or $(NBu_4)_2[(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(\mu-Cl)_2Pt(\mu-PPh_2)_2Pt(C_6F_5)_2](7)$, respectively. These complexes have been characterized by IR and ¹⁹F and ³¹P NMR spectroscopy, the latter indicating that in all cases no metal-metal bonds are present. The molecular structure of $[(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(phen)]$ has been established by an X-ray diffraction study. The Pt... Pt distance (3.5711(9) Å) confirms that there is no Pt-Pt bond.

^{*} Dedicated to Prof. F.G.A. Stone on the occasion of his 65th birthday.

Introduction

Polynuclear transition metal complexes containing bridging phosphide (PR_2^{-}) groups have recently attracted considerable attention, not only from a synthetic and structural viewpoint but also because in most cases the versatility of the PR₂ groups as supporting ligands allows the retention of the polynuclear framework during chemical reactions [1–8]. In the course of our researches on pentafluorophenylpalladium or -platinum complexes we have synthesized homo- and hetero-metallic, bi- or tetra-nuclear, neutral or anionic Pd^{II} or Pt^{II} complexes containing diphenylphospido bridging groups.

The structures of the complexes reported have been established by IR and ¹⁹F and ³¹P NMR spectroscopy, and the molecular structure of the asymmetric compound $[(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(phen)]$ has been determined by a single-crystal X-ray diffraction study. There are no metal-metal bonds in these polynuclear complexes.

Results and discussion

(a) Preparation of complexes

The binuclear anionic complexes $(NBu_4)_2[(C_6F_5)_2M(\mu-PPh_2)_2M'(C_6F_5)_2]$ (1: M = M' = Pd; 2: M = M' = Pt) can be obtained by reaction of the corresponding halo complexes $(NBu_4)_2[M_2(\mu-X)_2(C_6F_5)_4]$ (M = Pd, X = Br; M = Pt, X = Cl) with an excess of LiPPh₂ (molar ratio ~ 1/4) (Scheme 1a). If the reaction is carried out in a 1/1 molar ratio with the intention of preparing binuclear complexes containing both (μ -X) and (μ -PR₂) bridging ligands, a mixture of the corresponding starting material and complex 1 or 2, respectively, is obtained. Different behaviour has been observed for binuclear rhodium(I) halide-bridged complexes, which react with LiPPh₂ (molar ratio 1/1) to give binuclear $Rh(\mu$ -Cl)(μ -PR₂)Rh \leq complexes [9].

Scheme 1. $Q - NBu_4$; (a) LiPPh₂, THF; (b) LiⁿBu, THF; (c) M'(C₆F₅)₂(THF)₂, M = Pd, Pt; (d) PtCl₂(dppm); (e) [Pt(μ -Cl)(C₆F₅)(tht)]₂, QClO₄ (tht = tetrahydrothiophene); (f) PtCl₂, QClO₄.

On the other hand, the reaction between $cis-M(C_6F_5)_2(THF)_2$ (THF = tetrahydrofuran) and $Li_2[M(C_6F_5)_2(PPh_2)_2]$ (1/1) (prepared "in situ" by treating $cis-M(C_6F_5)_2(PPh_2H)_2$ with Li^nBu in a 1/2 molar ratio in THF) yields, after addition of NBu₄ClO₄, complexes 1 and 2 in similar yields. The heterobimetallic complex (NBu₄)₂[(C₆F₅)₂Pt(μ -PPh₂)₂Pd(C₆F₅)₂] (3) can be obtained from the reaction between $Li_2[Pt(C_6F_5)_2(PPh_2)_2]$ and cis-Pd(C₆F₅)₂(THF)₂ (1/1) in THF (Scheme 1c).

The terminal phosphido ligands in $\text{Li}_2[cis-M(C_6F_5)_2(\text{PPh}_2)_2]$ are sufficiently nucleophilic to displace halide ligands from other mononuclear or binuclear platinum(II) complexes; for example, $\text{Li}_2[M(C_6F_5)_2(\text{PPh}_2)_2]$ (M = Pd, Pt) reacts with PtCl₂(dppm) (dppm = bis(diphenylphosphinomethane)) in THF (molar ratio 1/1) to yield the binuclear asymmetric neutral complexes $[(C_6F_5)_2M(\mu-PPh_2)_2Pt(dppm)]$ (4: M = Pd; 5: M = Pt) (Scheme 1d). Similarly the reaction between $\text{Li}_2[cis-Pt(C_6F_5)_2(\text{PPh}_2)_2]$ and $[Pt(\mu-Cl)(C_6F_5)(tht)]_2$ (tht = tetrahydrothiophene) in THF (molar ratio 2/1) yields, after addition of NBu₄ClO₄, (NBu₄)[(C₆-F₅)_2Pt(μ -PPh₂)_2Pt(C₆F₅)(tht)] (6) (Scheme 1e). However, no reaction takes place when a THF solution of $\text{Li}_2[cis-Pt(C_6F_5)_2(\text{PPh}_2)_2]$ and (NBu₄)₂[(C₆F₅)₂Pt(μ -Cl)₂-Pt(C₆F₅)₂] (molar ratio 2/1) is stirred at room temperature for 1.5 h.

In an attempt to prepare the binuclear asymmetric compound $(NBu_4)_2[(C_6F_5)_2-Pt(\mu-PPh_2)_2PtCl_2]$ we carried out the reaction between $Li_2[cis-Pt(C_6F_5)_2(PPh_2)_2]$ and $PtCl_2$ in THF at 0°C (molar ratio 1/1), but after addition of NBu_4ClO_4 to the resulting solution, the tetranuclear compound $(NBu_4)_2[(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(\mu-Cl)_2Pt(\mu-PPh_2)_2Pt(C_6F_5)_2]$ (7) was obtained (Scheme 1f). The isolation of this tetranuclear complex does not rule out the presence of the binuclear one in solution, since 7 could be formed from the binuclear derivative, as in eq. 1, and its lower solubility could be responsible for the separation of 7.

$$2[(C_{6}F_{5})_{2}Pt(\mu-PPh_{2})_{2}PtCl_{2}]^{2-} \iff [(C_{6}F_{5})_{2}Pt(\mu-PPh_{2})_{2}Pt(\mu-Cl)_{2}Pt(\mu-PPh_{2})_{2}Pt(C_{6}F_{5})_{2}]^{2-} + 2Cl^{-} (1)$$

Complex 7 or other similar tetranuclear derivatives can be prepared by an alternative route. Acetone solutions of $(NBu_4)_2[(C_6F_5)_2M(\mu-PPh_2)_2M'(C_6F_5)_2]$ (1: M = M' = Pd; 2: M = M' = Pt; 3: M = Pd, M' = Pt) react with an aqueous solution of HCl, molar ratio 1/2) to yield the tetranuclear derivatives $(NBu_4)_2[(C_5F_5)_2M(\mu PPh_2_2M'(\mu-Cl)_2M'(\mu-PPh_2)_2M(C_6F_5)_2$] (7: M = M' = Pt; 8: M = M' = Pd; 9: M = Pt, M' = Pd) (Scheme 2a). As can be seen, HCl cleaves two M-C bonds on the same metal atom, and although the intermediate $(NBu_4)_2[(C_6F_5)_2M(\mu PPh_2)_2M'Cl_2$ cannot be isolated, the tetranuclear species are obtained (eq. 1). In the case of the heterobinuclear complex 3, HCl selectively cleaves the Pd-C bonds to give 9, and there is no evidence for the formation of the isomer $(NBu_4)_2[(C_6F_5)_2Pd(\mu-PPh_2)_2Pt(\mu-Cl)_2Pt(\mu-PPh_2)_2Pd(C_6F_5)_2]$. When the reaction between the binuclear complexes 1 or 2 and HCl is carried out in a 1/1 molar ratio. a mixture of the tetranuclear complex 7 or 8 and the corresponding starting material (identified by its IR spectrum) is obtained. These results indicate that once $[(C_6F_5)_2M(\mu-PPh_2)_2M'(C_6F_5)Cl]^{2-1}$ is formed, the HCl acts selectively on the $M'-C_6F_5$ bond of this anion and not on the residual starting material [(C_6F_5)₂ M(μ - $PPh_2)_2M'(C_6F_5)_2]^2$. Similar behaviour has been observed for $(NBu_4)_2[M(C_6X_5)_4]$

Scheme 2. (a) HCl; (b) HCl, PPh₃; (c) L-L = dppm, bipy, or phen, respectively; (d) PPh₃.

(M = Pd, X = F, Cl; M = Pt, X = Cl), which react with HCl (molar ratio 1/1) to yield the corresponding binuclear complexes $(NBu_4)_2[(C_6X_5)_2M(\mu-Cl)_2M(C_6X_5)_2]$, along with unchanged starting material, although $(NBu_4)_2[Pt(C_6F_5)_4]$ under similar conditions gives the mononuclear compound $(NBu_4)_2[Pt(C_{\kappa}F_5)_3Cl]$ [10,11]. However, the binuclear complexes $(NBu_4)[(C_6F_5)_2M(\mu-PPh_2)_2M'(C_6F_5)(PPh_3)]$ (10: M = M' = Pt; 11: M = Pt, M' = Pd) are obtained when acetone solutions of 2 or 3 are treated with aqueous HCl in the presence of PPh₃ (molar ratio 1/1/1) (Scheme 2b), so that only one $M-C_6F_5$ bond per binuclear anion is cleaved. This different behaviour of HCl towards the binuclear derivatives 2 or 3 in the presence of PPh₂ may indicate that the reaction takes place stepwise, and that in the presence of PPh₃ the formation of the complexes $[(C_6F_5)_2M(\mu-PPh_2)_2M'(C_6F_5)(PPh_3)]^-$, which have smaller charges, is prefered, and furthermore that these must be less reactive towards the H⁺ than are $[(C_6F_5)_2M(\mu-PPh_2)_2M'(C_6F_5)]^{2-}$. Similar behaviour of $M-C_{x}X_{s}$ bonds towards HCl and L has been observed in other cases; e.g. $(NBu_4)_2[Pt(C_6Cl_5)_4]$ reacts with HCl in the presence of L (L = phosphines, stibines) (molar ratio 1/1/1) to yield $(NBu_4)_2[Pt(C_6Cl_5)_3L]$ rather than the binuclear derivative obtained in the absence of L [11,12]. Furthermore the action of an excess of HCl and PPh₃ on $(NBu_4)_2[(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(C_6F_5)_2]$ (molar ratio 2/2/1) leads to formation only of 10, no further $M-C_6F_5$ bonds being cleaved.

All the above results are summarized in Scheme 2. In no case is the HCl able to protonate a phosphido bridging ligand to give a terminal PPh₂H group, although it has recently been reported that some phosphido complexes can be protonated by acids with fragmentation of the binuclear framework $M(\mu$ -PPh₂)₂M and formation of mononuclear species containing terminal PPh₂H ligands [13,14].

The tetranuclear derivatives 7, 8 and 9 are useful intermediates for the synthesis of neutral asymmetric complexes since their reactions with bidentate ligands (L-L) such as dppm, bipy, or phen, in acetone (molar ratio 1/2) yield the corresponding $[(C_6F_5)_2M(\mu-PPh_2)_2M'(L-L)]$ (5: M = M' = Pt, L-L = dppm; 12: L-L = phen; 13: M = M' = Pd, L-L = bipy) complexes (Scheme 2c). When the reaction is carried out in a 1/1 molar ratio the binuclear complexes 5, 12, 13 are obtained

 Table 1

 Analyses, conductivities ^a, and relevant IR data (cm⁻¹) for the complexes

Complex	Analysis	(Found (c	:alcd.)(%))	ΛM (ohm ⁻¹	X-sensitive	Other	
	C	Н	N	$\operatorname{cm}^{2} \operatorname{mol}^{-1}$		bands	
$\overline{Q_2[(C_6F_5)_2Pd(\mu-PPh_2)_2Pd(C_6F_5)_2]}$	55.43	5.56	1.63	176	762, 752		
(1)	(55.34)	(5.34)	(1.61)				
$Q_{2}[(C_{6}F_{5})_{2}Pt(\mu-PPh_{2})_{2}Pt(C_{6}F_{5})_{2}]$	49.95	4.72	1.39	172	774, 762		
(2)	(50.21)	(4.84)	(1.46)				
$Q_2[(C_6F_5)_2Pt(\mu-PPh_2)_2Pd(C_6F_5)_2]$	52.89	5.39	1 .47	166	774, 762,		
(3)	(52.65)	(5.00)	(1.53)		750		
$(C_6F_5)_2Pd(\mu-PPh_2)_2Pt(dppm)$	52.83	3.21	-	n.c.	778, 770		
(4)	(52.71)	(3.04)					
$(C_6F_5)_2$ Pt(μ -PPh ₂) ₂ Pt(dppm)	49.42	2.92	-	n.c.	768. 761		
(5)	(49.54)	(2.86)					
$Q[(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(C_6F_5)(tht)]$	46.81	4.50	0.99	81	779, 762		
(6)	(46.76)	(4.05)	(0.88)				
$Q_2[(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(\mu-Cl)]_2$	45.41	4.30	0.94	168	779 , 7 70	250 ^b	
(7)	(45.50)	(4.11)	(1.02)				
$Q_2[(C_6F_5)_2Pd(\mu-PPh_2)_2Pd(\mu-Cl)]_2$	52.37	4.67	1.03	192	767, 760	248 ^b	
(8)	(52.25)	(4.72)	(1.17)				
$Q_2[(C_6F_5)_2Pt(\mu-PPh_2)_2Pd(\mu-Cl)]_2$	48.40	4.38	0.92	168	781, 771	248 ^ø	
(9)	(48.65)	(4.40)	(1.09)				
$Q[(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(C_6F_5)-$							
(PPh ₃)]	51.58	4.26	0.61	81	783, 775,		
(10)	(51.68)	(4.05)	(0.79)		767		
$Q[(C_6F_5)_2Pt(\mu-PPh_2)_2Pd(C_6F_5)-$							
(PPh ₃)]	53.95	4.35	0.91	92	773, 765		
(11)	(54.41)	(4.26)	(0.83)				
$[(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(phen)]$	45.00	2.30	2.31	n.c.	778, 770		
(12)	(45.22)	(2.21)	(2.20)				
$[(C_6F_5)_2Pd(\mu-PPh_2)_2Pd(bipy)]$	51.47	2.63	2.61	n.c.	c		
(13)	(51.09)	(2.60)	(2.44)				
$cis-Pd(C_6F_5)_2(PPh_2H)_2$	53.25	2.73	-	n.c.	782, 774	2324 ^d	
(14)	(53.21)	(2.73)					
cis-Pt(C ₆ F ₅) ₂ (PPh ₂ H) ₂	48.56	2.64	-	n.c.	794, 783	2329 ^d	
(15)	(47.96)	(2.46)					

^a In -5×10^{-4} mol dm⁻³; n.c. = non-conducting. ^b ν (M-Cl). ^c Absorptions due to bipy in this region precludes unambiguous assignment. ^d ν (P-H).

along with unchanged starting material. On the other hand, complex 12 reacts with dppm in CH_2Cl_2 (molar ratio 1/1) to yield 5.

Finally, complex 6 reacts with PPh₃ in CH₂Cl₂ (molar ratio 1/1) by displacement of the tetrahydrothiophene (tht) to yield 10 (Scheme 2d). In no case does the action of neutral monodentate or bidentate ligand, even in an excess, on these polynuclear complexes lead to cleavage of the $M(\mu$ -PPh₂)₂M' system.

Analytical and conductivity data along with relevant infrared absorptions related to the C_6F_5 group are listed in Table 1.

(b) Spectroscopic characterization of the complexes

The IR spectra of all the complexes show bands characteristic of the C_6F_5 group near 1500, 1050, 950 and 800 cm⁻¹ [15]. Table 1 lists the absorptions assigned to the

Complex	δ (F _o)	δ(F _m)		$\delta(\mathbf{F}_p)$	$J(Pt-F_o)$
1	- 108.3	- 165.3		-167.0	-
2	- 111.9	-166.3		-168.2	316.0
3	-108.5	-165.3		-167.0	-
	- 111.7	-166.6		-168.0	325.9
4	-110.2		- 164.5	-	-
5	-113.3		- 165.6		309.6
6	-112.6	ь		Ь	326.2
	-113.0				322.6
	-114.6				260.2
7	-113.8	- 165.7		-166.5	329.8
8	- 110.5	- 164.9		-165.5	-
9	-113.7	- 165.8		- 166.5	316.9
10	-112.4 °	Ь		Ь	323.4
	-113.1				222.8
11	-110.6	- 167.1		-164.7	-
	-112.2 °	- 166.0		-163.5	329.8
12	- 113.7	- 165.5		- 165.8	315.6
13	-110.3	- 164.5		-164.3	-
14 ^d	-116.3	- 164.1		-162.0	_
15 ^d	- 118.9	- 164.8		-162.7	335.4

Table 2 ¹⁹F NMR spectroscopic data ^a

 δ relative to CFCl₃, J in Hz; solvent acetone- d_6 . ^b Complex multiplets which could not be unabiguously assigned. ^c This signal is due to the C₆F₅ groups bonded to the same platinum centre. Although the two groups are inequivalent, only one signal, with double intensity is observed. ^d in CDCl₃.

X-sensitive mode of this group that are of structural interest. Two bands with the same intensity are observed for complexes containing two C_6F_5 groups per metal centre, which indicates [16] that the C_6F_5 groups are mutually *cis*. Complex 3 shows three bands, indicating that the C_6F_5 groups are bonded to different metal centres Complexes 6 and 11 were expected to show three bands in view of their stoichiometry but only two of them were observed.

Bands in the 500 cm⁻¹ region due to the PPh₂ group are observed in the phosphido complexes. Complexes 14 and 15 show absorptions in the ~ 850 and 2300 cm⁻¹ regions, assigned respectively to a P-H deformation mode and ν (P-H) of the PPh₂H ligand [17].

¹⁹F and ³¹P NMR specta. The ¹⁹F NMR spectral data for solutions in acetone- d_6 are listed in Table 2, and are consistent with the proposed structures. As usual, in all cases the o-F and m-F of each C₆F₅ group are isochronous. The ³¹P NMR spectra provide valuable information on the structure of the complexes (Table 3). The corresponding δ ³¹P (PPh₂) signals appear in all cases at very high field (in the range -95 to -150 ppm (relative to H₃PO₄)), indicating the absence of metal-metal bonds in the complexes.

Published data show that upfield (δ + 50 to -200) resonance are usually found for μ -PPh₂ ligands bridging two metals not joined by a metal-metal bond [18-20]. Complexes 1, 2, 3, 7, 8, 9, 12, 13, containing two equivalents (μ -PPh₂) ligands, show one signal assignable to the phosphido groups; for complexes containing platinum atoms, platinum satellites due to the ¹⁹⁵Pt (33.7% I $\frac{1}{2}$) are observed with ¹J(Pt-P) values ranging from 2615 to 1668 Hz. No ³J(Pt-P) coupling was observed for complex 7. The spectrum of 6 shows a characteristic first order AB system, indicating the presence of two inequivalent $(\mu$ -PPh₂) ligands. Since both platinum atoms are inequivalent four ¹J(Pt-P) coupling constants can be observed. The coupling constants (¹J(Pt-P)) corresponding to the signal at δ -148.3 ppm are 1623 and 1776 Hz, and the signal at δ -130.7 shows platinum satellites with ¹J(Pt-P) 1911 and 2134 Hz. In the light of these observations it seems reasonable to assume that the signal at δ -148.3 ppm is due to the phosphido ligand *cis* to the tht group, since the coupling constants for this signal are more similar than are those ones for the other signal. The spectrum of 11 is consistent with the presence of three inequivalent P atoms. The signal at lowest field can be assigned to the PPh₃ ligand. It should be noticed that ²J(PR₃-PR₂⁻_{*cis*}) coupling is observed. For 10 the complexity of the signals in the region corresponding to PPh₂ precludes and unequivocal assignment of the various parameters, but the parameters for the PPh₃ signal can be assigned.

The spectra of 4 and 5 can be analyzed in terms of an AA'XX' spin system with platinum satellites. The various parameters related to these spectra have been computed by standard methods [21,22] and are listed in Table 3. Figure 1 shows the half spectrum in the dppm region for complex 4.

(c) Structure of $[(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(phen)]$ (12)

Table 3

The structure of 12 was determined by a single-crystal X-ray diffraction study. General crystallographic information is presented in Table 4. Fractional coordinates of non-hydrogen atoms are given in Table 5. Bond distances and bond angles are listed in Table 6. The structure of 12 (Fig. 2) consists of a binuclear complex formed

			FF - 7 -								
			3								
	R L	2/ ^{NI} \	4								
	δ _{1.2}	δ _{3.4}	¹ J _{1.5}	¹ J _{1.6}	¹ J _{2.5}	¹ J _{2.6}	¹ J _{3.6}	² J _{1.2}	² J _{1.3}	² J _{2.3}	$^{2}J_{3.4}$
1	- 105.6										
2	- 146.9		1787								
3	-128.2		1668								
4	- 105.6	- 28.9		1603			1694	158 ª	18	270	30 a
5	- 105.6	- 29.0	f 160)9 ^ø			1 69 7	159 ª	17	272	30 a
			158	39							
			f 162	23 *							
6	- 148.3		\ 177	77				142			
	-130.7				1911 °	2134 °					
7	-139.4		1941 ^c	2616 °							
8	-113.1										
9	-133.2		1761								
10	đ	19.9					2129			316	
11	-132.2	21.4	1602					163		326	
	- 109.4				1737						
12	-132.0		1849 ^c	2163 ^c							
13	- 96.0										

³¹P {¹H} NMR data (δ in ppm, J in Hz) (relative to H₃PO₄, solvent acetone-d₆)

 ${}^{a} |J_{AA'}|$ and $|J_{XX'}|$. ^b The two coupling constants could not be assigned unequivocally. ^c These values were assigned by taking into account the high *trans*-influence of the C₆F₅ group. ^d See text.

Fig. 1. The half spectrum $({}^{31}P \text{ NMR})$ of the dppm area for $[(C_6F_5)_2Pd(\mu-PPh_2)_2Pt(dppm)]$ (4). The horizontal axis is labeled in ppm.

by two different and distorted square planar platinum environments which share an edge containing the P atoms of both PPh₂ bridging ligands. Within the Pt_2P_2 ring, the Pt-Pt distance (3.5711(9) Å) [29] indicates that no metal-metal bond is present (in agreement with the ³¹P NMR data). Because of the long Pt-Pt distance, the

Fig. 2. Molecular structure of $[(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(phen)]$ (12) showing the atom labelling scheme.

Table	4
-------	---

Formula	$C_{48}H_{28}N_2F_{10}P_2Pt_2$
M	1274.9
Crystal system	Triclinic
Space group	РĪ
Z	2
a (Å)	11.155(2)
b (Å)	11.935(3)
c (Å)	17.575(4)
α (°)	72.301(21)
β(°)	72.142(17)
γ(°)	78.211(18)
V (Å ³)	2077.4
Diffractometer	Enraf-Nonius CAD 4
T (K)	293 ± 1
Radiation	Mo-K _a
λ (Å)	0.71069
$\mu (Mo-K_a) (cm^{-1})$	70.9, empirical absorption correction
	was applied [35].
9-range (°)	1–25°
Mode	$\theta - 2\theta$ scans
Data measured	7815
Data used	$6279 (F > 4\sigma(F))$
Solution	Direct methods, ΔF syntheses
Refinement	Full-matrix least squares
Model	All atoms anisotropic. H atoms non
	resolved. Rigid planar hexagons for
	C_6H_5 groups.
Weighting scheme	$w^{-1} = \sigma^2 (F) + 0.002009(F^2)$
R _w	0.0382
R	0.0323
Variables	529

Crystal data and details of the crystallographic study of $(C_6F_5)_2$ Pt(µ-PPh₂)₂Pt(phen)^a

^a Suitable crystals were obtained by slow diffusion (ca. 2 weeks at -30° C) of n-hexane into a solution of the complex in acetone.

Pt-P-Pt angles are 102.7(1) and 103.2(1)°. Similar Pt...Pt distances (3.585(1) or 3.699(1) Å) and Pt-P-Pt angles (102.8(1), 103.9(1)°) have been observed for other neutral [PtCl(PPh₂)(PPh₂H)]₂ or cationic [Pt(PPh₂)(Ph₂PCH₂CH₂PPh₂)]₂Cl₂ platinum(II) phosphido complexes [18] without Pt-Pt bonds. The small P-Pt-P angles (74.7(1) and 75.4(1)°) are the result of the long Pt(1)...Pt(2) distance and the large Pt(1)-P-Pt(2) angles. The Pt₂P₂ ring is not planar, the dihedral angles formed by the planes Pt(1)-P(1)-P(2) and Pt(2)-P(1)-P(2) or Pt(1)-P(1)-Pt(2) and Pt(1)-P(2)-Pt(2) being 160.93(7) and 155.64(8)°, respectively. The four Pt-P distances are slightly different, and fall in the range 2.269(1)-2.294(1) Å.

The square planar environments of both platinum atoms are different. Pt(1) is bonded to two phosphido and two pentafluorophenyl groups, and the corresponding Pt-C distances (2.099(6) and 2.069(5) Å) lie close to the top of the range found for Pt-C distances in other pentafluorophenylplatinum(II) complexes [23-27]; shorter Pt-C distances have been found in complexes such as $(NBu_4)_2[(C_6F_5)_2-Pt(\mu-Cl)_2Pt(C_6F_5)_2]$ (1.977(10) and 1.991(10) Å) [26] or $[Pt(C_6F_5)_2(\mu-Br)Pd(\eta^4-1,5-$ Table 5

Fractional atomic coordinates $(\times 10^4)$ and their estimated standard deviations for $(C_6F_5)_2$ Pt(μ -PPh₂)₂Pt(phen)

	x	у	Z	B (Å ²) ^a	
Pt1	2099(1)	7006(1)	2162(1)	2.36(2)	
P t2	65(1)	9669(1)	2413(1)	2.51(2)	
P1	391(1)	7718(1)	3084(1)	2.46(10)	
P2	2037(1)	9024(1)	1722(1)	2.58(10)	
N1	-1661(5)	10244(4)	3206(3)	2.99(37)	
N2	- 345(5)	11438(4)	1712(3)	3.13(37)	
Cl	- 2245(6)	9696(6)	3956(4)	3.45(46)	
C2	-3298(7)	10211(7)	4462(5)	4.26(56)	
C3	-3785(7)	11321(7)	4148(5)	4.47(59)	
Č4	- 3191(6)	11983(6)	3339(5)	3.80(51)	
C5	-2113(6)	11408(5)	2887(4)	3.08(45)	
C6	- 1458(6)	12039(5)	2103(4)	3.04(44)	
C7	-1872(6)	13185(6)	1757(5)	3.89(52)	
C8	-3013(7)	13761(6)	2217(6)	4.62(60)	
C9	-3626(7)	13193(7)	2965(6)	4.89(64)	
C10	-1202(8)	13751(7)	958(6)	5.29(66)	
C11	-107(7)	13149(6)	565(5)	4.64(58)	
C12	305(7)	11993(6)	971(5)	4.12(53)	
C13	2003(6)	5182(5)	2675(4)	2.84(42)	
C14	2648(6)	4519(6)	3243(4)	3.39(46)	
C15	2608(7)	3326(6)	3588(4)	4.15(51)	
C16	1881(7)	2752(6)	3377(5)	4.27(55)	
C17	1268(7)	3337(6)	2792(5)	4.31(57)	
C18	1334(7)	4550(6)	2454(4)	3 73(51)	
C19	3630(6)	6688(5)	1200(4)	2 59(39)	
C20	4874(6)	6584(5)	1211(4)	3 35(47)	
C20	5881(6)	6490(6)	555(4)	3 79(49)	
C22	5669(8)	6450(6)	- 173(5)	5.06(61)	
C22	4476(8)	6520(6)	-232(4)	3 93(52)	
C24	3474(7)	6624(6)	462(5)	3 81(51)	
C25	651(d)	7574(3)	4084(7)	2 67(39)	
C25	792(4)	6460(3)	4630(2)	4 12(52)	
C20	1075(4)	6353(3)	\$371(2)	5 26(67)	
C28	1075(4)	7360(3)	5565(2)	5 55(73)	
C20	1078(4)	8474(3)	5018(2)	5 32(71)	
C29	1070(4) 70 <i>A</i> (<i>A</i>)	8581(3)	4777(7)	4 10(54)	
C31	- 1080(3)	7090(4)	3200(3)	2 93(40)	
C31	-1000(3)	6765(4)	4086(3)	4 49(55)	
C32	-3041(3)	6355(4)	4185(3)	5 44(68)	
C33	- 3356(3)	6271(4)	3406(3)	6 44(83)	
C35	- 2533(3)	6596(4)	2709(3)	6 52(87)	
C35		7005(4)	2611(3)	4 27(56)	
C30	- 1375(3) 2388(A)	9621(4)	610(2)	2 94(40)	
C38	2386(4) 3386(A)	10283(4)	139(2)	3 80(47)	
C30	3570(4)	10703(4)	-717(2)	4 73(56)	
C40	2773(A)	10/05(4)	-1101(2)	471(57)	
C41	1775(4)	9797(4)	- 630(2)	6.00(74)	
C47	1587(4)	9377(4)	226(2)	4.55(58)	
C43	3107(4)	9580(3)	2092(3)	3.01(42)	
C44	3739(4)	8769(3)	2643(3)	3.78(49)	
C45	4515(4)	9157(3)	2976(3)	4.69(61)	
C46	4658(4)	10358(3)	2758(3)	5.01(66)	
C47	4026(4)	11169(3)	2207(3)	4.75(62)	

Table	5	(continued)
		(serences)

	x	у У	Z	$B(\dot{A}^2)^a$
C48	3250(4)	10781(3)	1874(3)	3.66(48)
F1	3392(4)	5044(4)	3496(3)	4.52(32)
F2	3288(5)	2726(4)	4148(3)	6.12(38)
F3	1845(5)	1583(3)	3731(3)	6.91(43)
F4	599(6)	2775(4)	2549(3)	7.03(50)
F5	678(5)	5091(4)	1882(3)	5.27(38)
F6	5154(4)	6590(4)	1909(3)	4.81(34)
F7	7092(4)	6416(4)	590(3)	5.56(36)
F8	6680(5)	6331(4)	- 838(3)	6.88(41)
F9	4290(5)	6451(5)	-916(3)	6.43(44)
F10	2317(4)	6669(4)	367(3)	5.25(39)

^{*a*} B_{eq} anisotropic atoms.

 $C_8H_{12}(\mu-Br)Pt(C_6F_5)_2(\mu-Br)Pd(\eta^4-1,5-C_8H_{12})(\mu-Br)$ (1.974(9), 1.967(9) Å) [28] probably as a consequence of the high *trans*-influence of the bridging phosphido group. On the other hand, P(1) and P(2) are both closer to Pt(2) (2.279(1), 2.269(1) Å) than they are to Pt(1) (2.294(1), 2.288(1) Å), in accordance with the higher trans-influence of C_6F_5 than of the N donor ligand. As a consequence of the small P(1)-P(1)-P(2) angle (74.7°), the remaining angles at the P(1) atom are all greater than 90°, the P-Pt(1)-C angles being larger (94.9(2) and 99.3(2)°) than the corresponding C(13)-Pt(1)-C(19) (91.1(2)°) angle. The Pt(1) environment is very close to planar; the dihedral angles formed by the planes C(13)-Pt(1)-C(19) and P(1)-Pt(1)-P(2) or P(1)-Pt(1)-C(13) and P(2)-Pt(1)-C(19) are 177.58(16) and 177.74(18)°, respectively [29]. Pt(2) is bonded to two phosphido groups and to the phen ligand, and because of the small values of the P(1)-P(2)-P(2) (75.4(0)°) and N(1)-Pt(2)-N(2) (78.7(2)°) [30], the corresponding P(1)-Pt(2)-N(1) and P(2)-N(1)Pt(2)-N(2) are larger than 90° (101.6(1) and 105.2(1)°, respectively). The Pt(2) environment deviates more from planarity than does that of Pt(1). The corresponding dihedral angles formed by the planes N(1)-Pt(2)-N(2) and P(1)-Pt(2)-P(2) or P(1)-Pt(2)-N(1) and P(2)-Pt(2)-N(2) are 168.78(14) and 171.05(12)°, respectively [29].

Experimental

C, H and N analyses were carried out with a Perkin Elmer 240B microanalyzer. IR spectra were recorded on a Perkin Elmer 599 spectrophotometer (range 4000-200 cm⁻¹) with Nujol mulls between polyethylene plates. ¹⁹F and ³¹P NMR spectra were recorded on a Varian XL200 instrument (200 Mz for ¹H). Conductivities were measured with a Philips PW 9501/01 conductimeter (acetone solutions, $c \sim 5 \times 10^{-4}$ M).

Published methods were used to prepare the following starting materials: cis-Pt(C₆F₅)₂(THF)₂ [28], cis-Pd(C₆F₅)₂(THF)₂ [28], LiPPh₂ [31], (NBu₄)₂[Pt₂(μ -Cl)₂(C₆F₅)₄], [32], (NBu₄)₂[Pd₂(μ -Br)₂(C₆F₅)₄ [33], [Pt(μ -Cl)(C₆F₅)(tht)]₂ [34].

 $cis-M(C_6F_5)_2(PPh_2H)_2$ (14: $M = Pd_2$ 15: M = Pt)

M = Pt: To a CH_2Cl_2 (20 ml) solution of *cis*-Pt(C_6F_5)₂(THF)₂ (0.700 g, 1.039 mmol) was added PPh₂H (0.362 ml, 2.078 mmol), and the mixture was stirred at

			1 1 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
a) Bond distances	(i)						
1-Pt1	2.294 (1)	C11-C10	1.383 (11)	P2-P1	2.288 (1)	C12-C11	1.403 (9)
33-Pt1	2.099 (6)	C14-C13	1.367 (9)	C19-P1	2.069 (5)	C18-C13	1.364 (12)
1-P12	2.279 (1)	CIS-CI4	1.371 (9)	P2-P12	2.269 (1)	FI-CI4	1.373 (10)
VI-P2	2.127 (5)	C16-C15	1.352 (13)	N2-P12	2.135 (5)	F2-C15	1.366 (9)
25-P1	1.818 (5)	C17-C16	1.347 (12)	C31-P1	1.829 (4)	F3-C16	1.347 (7)
37-P2	1.810 (3)	C18-C17	1.396 (9)	C43-P2	1.830 (5)	F4-C17	1.328 (12)
IN-I	1.308 (8)	F5-C18	1.352 (9)	CS-N1	1.383 (7)	C20-C19	1.374 (10)
26-N2	1.394 (8)	C24-C19	1.386 (11)	C12-N2	1.323 (8)	C21-C20	1.354 (9)
2-CI	1.395 (9)	F6-C20	1.358 (10)	<u>3-3</u>	1.342 (10)	C22-C21	1.388 (13)
5	1.426 (9)	F7-C21	1.355 (9)	CS-C4	1.400 (9)	C23-C22	1.350 (13)
5	1.445 (9)	F8-C22	1.373 (9)	C6-C5	1.405 (8)	C24-C3	1.396 (9)
7-C6	1.365 (8)	F9-C23	1.309 (11)	C8-C1	1.448 (10)	F10-C24	1.339 (10)
310-C7	1.405 (1)			C9-C3	1.322 (11)		
b) Bond angles (°,	~						
72-Pt1-P1	74.7 (1)	C12-C11-C10	119.4 (7)	C13-P1-P1	99.3 (2)	C11-C12-N2	122.1 (6)
71 3-Pt1-P2	174.0 (2)	C14-C13-P1	122.3 (6)	C19-Pt1-P1	169.3 (2)	C18-C13-Pt1	123.3 (5)
219-Pt1-P2	94.9 (2)	C18-C13-C14	114.3 (6)	C19-Pt1-C13	91.1 (2)	C15-C14-C13	123.7 (8)

Table 6 Bond distances (Å) and bond angles (°) and their estimated standard deviations for $(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(phen)$

.

116.3 (6)	120.1 (8)	119.8 (6)	121.4 (8)	120.7 (6)	123.6 (7)	115.9 (8)	121.8 (5)	124.3 (7)	115.8 (7)	122.2 (8)	120.5 (7)	119.8 (9)	(1) 8.611	123.9 (7)	115.0 (8)	119.3 (3)	115.9 (3)	115.6 (3)	122.2 (3)		
FI-C14-C15	F2-C15-C14	C17-C16-C15	F3-C16-C17	F4-C17-C16	C17-C18-C13	F5-C18-C17	C24-C19-P1	C21-C20-C19	F6-C20-C21	F7-C21-C20	C23-C22-C21	F8-C22-C23	F9-C23-C22	C23-C24-C19	F10-C24-C23	C30-C25-P1	C36-C31-P1	C42-C37-P2	C48-C43-P2		
101.6 (1)	173.8 (2)	78.7 (2)	114.8 (1)	115.4 (2)	106.4 (2)	114.7 (2)	112.6 (1)	107.5 (2)	112.3 (4)	113.3 (3)	118.5 (5)	118.1 (6)	116.9 (6)	118.6 (6)	119.5 (5)	116.2 (5)	121.7 (5)	118.9 (6)	120.5 (6)	118.8 (6)	
N1-Pt2-P1	N2-P12-P1	N2-Pt2-N1	C25-P1-P1	C31-P1-P1	C31-P1-C25	C37-P2-P1	C43-P2-P1	C43-P2-C37	CS-N1-P2	C6-N2-P12	C12-N2-C6	C3-C2-C1	CS-C4-C3	S-5-S	C6-C5-N1	C5-C6-N2	C7-C6-C3	C10-C7-C6	හ- ය-ග	C11-C10-C7	
120.0 (6)	119.6 (7)	120.3 (6)	118.7 (7)	118.7 (9)	120.6 (7)	120.5 (6)	123.9 (5)	114.2 (6)	119.9 (5)	(1) 0.011	118.7 (6)	119.7 (8)	118.0 (8)	122.1 (8)	121.1 (6)	120.5 (4)	124.0 (4)	124.4 (3)	117.7 (3)		
F1-C14-C13	C16-C15-C14	F2-C15-C16	F3-C16-C15	C18-C17-C16	F4-C17-C18	F5-C18-C13	C20-C19-P1	C24-C19-C20	F6-C20-C19	C22-C21-C20	F7-C21-C22	F8-C22-C21	C24-C23-C22	F9-C23-C24	F10-C24-C19	C26-C25-P1	C32-C31-P1	C38-C37-P2	C44-C43-P2		
75.4 (1)	171.5 (2)	105.2 (1)	102.7 (1)	110.1 (1)	107.1 (1)	103.2 (1)	114.0 (1)	104.4 (1)	128.9 (4)	118.4 (5)	128.2 (4)	124.2 (6)	120.9 (6)	124.5 (6)	121.3 (5)	119.2 (5)	122.1 (5)	118.7 (6)	122.3 (6)	121.3 (7)	
P2-P12-P1	N1-P12-P2	N2-P12-P2	Pt2P1Pt1	C25-P1-P2	C31-P1-P2	P12-P2-P1	C37-P2-P12	C43-P2-P12	CI-NI-P2	CS-N1-CI	C12-N2-P12	C2-C1-N1	C4-C3-C2	C9-C4-C3	C4-CS-NI	CS-CS-C4	C7-C6-N2	C3-C7-C6	C10-C7-C8	C3-C9-C4	

room temperature for 1 h. The solution was concentrated to ca. ~ 2 ml and n-hexane (20 ml) was added. The white precipitate was washed with n-hexane 15, 90% yield. 14 was prepared similarly in 85% yield.

$(NBu_4)_2[MM'(\mu - PPh_2)_2(C_6F_5)_4]$ (1: M = M' = Pd; 2: M = M' = Pt; 3: M = Pt, M' = Pd)

Preparation of 2

(a) From $(NBu_4)_2[Pt_2(\mu-Cl)_2(C_6F_5)_4]$. To a solution of LiPPh₂ (2.027 mmol) in THF (10 ml) at 0°C, was added $(NBu_4)_2[Pt_2(\mu-Cl)_2(C_6F_5)_4]$ (0.800 g, 0.496 mmol) and the mixture stirred at room temperature for 7 h. The solution was evaporated to dryness and the oily residue was extracted with Et₂O (10 ml) and the extract was evaporated to dryness. The resulting white solid was washed with ⁱPrOH and recrystallized from CH₂Cl₂/ⁱPrOH, 67% yield.

(b) From $cis-Pt(C_6F_5)_2(PPh_2H)_2$. A THF (10 ml) solution of $cis-Pt(C_6F_5)_2(PPh_2H)_2$ (0.527 g, 0.584 mmol) was treated with LiⁿBu (1.703 mmol) in hexane and $cis-Pt(C_6F_5)_2(THF)_2$ (0.394 g, 0.585 mmol) was subsequently added. The mixture was stirred at room temperature for 20 min, then evaporated to dryness. The residue was extracted with Et₂O (20 ml) and the extract evaporated to dryness. The residue was treated with ⁱPrOH (30 ml) and NBu₄ClO₄ (0.400 g, 1.169 mmol) was added to the filtered solution to produce white crystals of **2**, which was washed with ⁱPrOH. Yield 62%.

Complex 1 was prepared by treating $(NBu_4)_2[Pd_2(\mu-Br)_2(C_6F_5)_4]$ (0.836 g, 0.548 mmol) with LiPPh₂ (1.953 mmol). The work up was similar to that for 2 (method a). Yield 46%.

Complex 3 was obtained in the same way as 2 (method b), $cis-Pt(C_6F_5)_2(PPh_2H)_2$ (0.400 g, 0.444 mmol); 0.945 mmol of LiⁿBu; $cis-Pd(C_6F_5)_2(THF)_2$ (0.260 g, 0.444 mmol). After the extraction with Et₂O and removal of the ether, the residue was extracted with 20 ml of CH₂Cl₂ and the extract evaporated to dryness. The residue was taken up in MeOH (20 ml) and NBu₄ClO₄ (0.304 g, 0.888 mmol) was added, to produce a yellow solid (3), which was washed with MeOH. Yield 45%.

 $(NBu_4)[(C_6F_5)_2M(\mu-PPh_2)_2M'(C_6F_5)L]$ (6: M = M' = Pt, L = tht; 10: M = M' = Pt, $L = PPh_3$; 11: M = Pt, M' = Pd, $L = PPh_3$)

Complex 6. To a THF solution (15 ml) of cis-Pt(C₆F₅)₂(PPh₂H)₂ (0.400 g, 0.444 mmol) and 0.945 mmol of LiⁿBu was added [Pt(μ -Cl)(C₆F₅)(tht)]₂ (0.215 g, 0.221 mmol). The mixture was stirred at room temperature for 3 h. The solution was evaporated to dryness, the residue extracted with 30 ml of CH₂Cl₂ and the extract was filtered and evaporated to dryness. The residue was taken up in ⁱPrOH (30 ml), the colourless mixture was filtered, and NBu₄ClO₄ (0.152 g, 0.444 mmol) added, to give crystalline 6, which was washed with ⁱPrOH. Yield 67%.

Complex 10

(a) From 6. To a colourless dichloromethane solution of 6 (0.100 g, 0.063 mmol) was added PPh₃ (0.0165 g, 0.063 mmol). The mixture was stirred at room temperature for 24 h, then evaporated almost to dryness. Addition of ⁱPrOH (20 ml) produced a precipitate of 10, which was washed with ⁱPrOH. Yield 45%.

(b) From 2. A solution of 0.150 g (0.078 mmol) of 2 in acetone (15 ml), was treated at room temperature with 0.078 mmol of HCl in water and PPh₃ (0.020 g,

0.078 mmol). The mixture was kept for 5 h then evaporated almost to dryness and ⁱPrOH (15 ml) was added. The white precipitate (10) was washed with ⁱPrOH. Yield 76%.

Complex 11 was obtained similarly from 3 (0.150 g, 0.082 mmol), HCl (0.082 mmol) and PPh₃ (0.0215 g, 0.082 mmol). Recrystallization was from acetone/ isopropanol. Yield 71%.

$(NBu_4)_2[(C_6F_5)_2Pt(\mu-PPh_2)_2Pt(\mu-Cl)_2Pt(\mu-PPh_2)_2Pt(C_6F_5)_2]$ (7)

(a) From 2. To an acetone (20 ml) solution of 2 (0.150 g, 0.078 mmol) was added 0.156 mmol HCl in water and the mixture was stirred at room temperature for 5 h. The solution was evaporated almost to dryness and addition of ⁱPrOH (15 ml) with vigorous stirring gave a precipitate of 7, which was washed with ⁱPrOH. Yield 80%.

(b) From $cis-Pt(C_6F_5)_2(PPh_2H)_2$. PtCl₂ (0.050 g, 0.188 mmol) was added to a THF (10 ml) solution of LiⁿBu (0.399 mmol) and $cis-Pt(C_6F_5)_2(THF)_2$ (0.168 g, 0.186 mmol) at -10° C, and the mixture was stirred for 90 min then evaporated to dryness. The residue was extracted with CH₂Cl₂ (20 ml) and the extract evaporated to dryness. Addition of ⁱPrOH produced a dark solution, the addition of NBu₄ClO₄ (0.063 g, 0.186 mmol) resulted in crystallization of 7. Yield 43%.

$(NBu_4)_2[(C_6F_5)_2Pd(\mu-PPh_2)_2Pd(\mu-Cl)_2Pd(\mu-PPh_2)_2Pd(C_6F_5)_2]$ (8)

This compound was synthesized in the same way as 7 (method a) from 1 (0.083 g, 0.047 mmol) and aqueous HCl (0.094 mmol). The oily residue obtained after evaporation to dryness was disolved in a mixture of acetone (10 ml) and ⁱPrOH (15 ml), and concentration of the solution to ~ 10 ml yielded **8**, which was washed with ⁱPrOH. Yield 70%.

$(NBu_4)_2[(C_6F_5)_2Pt(\mu-PPh_2)_2Pd(\mu-Cl)_2Pd(\mu-PPh_2)_2Pt(C_6F_5)_2]$ (9)

Complex 9 was obtained similarly from 3 (0.150 g, 0.082 mmol) and aqueous HCl (0.164 mmol). Yield 94%.

 $(C_6F_5)_2M(\mu-PPh_2)_2M'(L-L)$ (5: M = M' = Pt, L-L = dppm; 4: M = Pd, M' = Pt, L = dppm; 12: M = M' = Pt, L-L = phen; 13: M = M' = Pd, L-L = bipy)

Complex 5. To a THF (10 ml) solution of cis-Pt(C₆F₅)₂(PPh₂H)₂ (0.150 g, 0.166 mmol) and LiⁿBu (0.424 mmol), at 0°C, was added PtCl₂(dppm) (0.108 g, 0.166 mmol). The mixture was stirred for 2 h at 0°C and overnight at room temperature, and then evaporated to dryness. The residue was extracted at room temperature with Et₂O (5 ml) and the extract evaporated to dryness. The residue was extracted with CH₂Cl₂ (20 ml) and the extract evaporated to ca. 5 ml. Addition of CHCl₃ (15 ml) and concentration to ca. 2 ml produced a yellow precipitate of 5 which was washed with 1 ml of CHCl₃ and 2 × 2 ml of Et₂O. Yield 43%.

Complex 4 was obtained similarly. Yield 23%.

Complex 12. To an acetone (15 ml) solution of 7 (0.100 g, 0.036 mmol) was added 1,10-phen \cdot H₂O (0.015 g, 0.076 mmol), and the mixture stirred at room temperature for 7 h. The solution was evaporated to ca. 3 ml, and addition of MeOH (~ 5 ml) then gave 12, which was washed with MeOH. Yield 77%.

Complex 13. To an acetone (~15 ml) solution of 8 (0.066 g, 0.027 mmol) was added 2,2'-bipy (0.0094 g, 0.060 mmol). The mixture was stirred at room tempera-

ture for 5 h, then evaporated almost to dryness. Addition of ⁱPrOH (~ 20 ml) gave solid 13 (93% yield), which was washed with ⁱPrOH.

Acknowledgements

We thank the Spanish Comisión Interministerial de Ciencia y Tecnologia (Project PB85-0128) for financial support and the Caja de Ahorros de la Inmaculada (Spain) for a grant (F.M.).

References

- 1 L. Gelmini, L.C. Matassa and D.W. Stephan, Inorg. Chem., 24 (1985) 2585.
- 2 L. Gelmini and D.W. Stephan, Inorg. Chim. Acta, 111 (1986) L17.
- 3 L. Gelmini and D.W. Stephan, Inorg. Chem., 25 (1986) 1222.
- 4 S. Guessmi, P.H. Dixneuf, N.J. Taylor and A.J. Carty, J. Organomet. Chem., 328 (1987) 193.
- 5 T.A. Albright, S. Kang, A.M. Arif, A.J. Bard, R.A. Jones, J.K. Lelant and S.T. Schwab, Inorg. Chem., 27 (1988) 1246.
- 6 A.M. Arif, D.E. Heaton, R.A. Jones and C.M. Nunn, Inorg. Chem., 26 (1987) 4228.
- 7 A.M. Arif, R.A. Jones and S.T. Schwab, J. Coord. Chem., 16 (1987) 51.
- 8 L. Gelmini and D.W. Stephan, Organometallics, 7 (1988) 849.
- 9 E.W. Burkhardt, W.C. Mercer and G.L. Geoffroy, Inorg. Chem., 23 (1984) 1779.
- 10 R. Usón, J. Forniés, M. Tomás and R. Fandos, J. Organomet. Chem., 263 (1984) 253.
- 11 R. Usón, J. Forniés, F. Martinez, M. Tomás and I. Reoyo, Organometallics, 2 (1983) 1386.
- 12 R. Usón, J. Forniés, M. Tomás, I. Ara and B. Menjón, J. Organomet. Chem., 336 (1987) 129.
- 13 Y.F. Yu, Ch.N. Chan and A. Wojicki, Inorg. Chem., 25 (1986) 4098.
- 14 S.G. Shyn, N. Calliganis, G. Nardini and A. Wojicki, J. Am. Chem. Soc., 109 (1987) 3617.
- 15 E. Maslowsky, Jr., Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, p. 84.
- 16 R. Usón, J. Forniés, M. Tomás and B. Menjón, Organometallics, 5 (1986) 1581.
- 17 S.J. Cartwright, K.R. Dixon and A.D. Rattray, Inorg. Chem., 19 (1980) 1120.
- 18 A.J. Carty, F. Hartstock and N.C. Taylor, Inorg. Chem., 21 (1982) 1349.
- 19 E.D. Morrison, A.D. Harley, M.A. Marcelli, G.L. Geoffroy, A.L. Rheingold and W.C. Fuetz, Organometallics, 3 (1984) 1407.
- 20 P.E. Garrou, Chem. Rev., 81 (1981) 229.
- 21 E.W. Garbisch, Jr., J. Chem. Ed., 45 (1968) 480.
- 22 H. Günther, Angew. Chem. Int. Ed. Engl., 10 (1972) 861.
- 23 R. Usón, J. Forniés, M.A. Usón, J.F. Yagüe, P.G. Jones and K. Meyer-Bässe, J. Chem. Soc., Dalton Trans., (1986) 947.
- 24 R. Usón, J. Forniés, M. Tomás, B. Menjón and A.J. Welch, J. Organomet. Chem., 304 (1986) C24.
- 25 J. Forniés, M.A. Usón, J.I. Gil and P.G. Jones, J. Organomet. Chem., 311 (1986) 243.
- 26 R. Usón, J. Forniés, M. Tomás, J.M. Casas, F.A. Cotton and L.R. Falvello, Inorg. Chem., 26 (1987) 3482.
- 27 R. Usón, J. Forniés, M. Tomás, J.M. Casas and C. Fortuño, Polyhedron, 8 (1989) 2211.
- 28 R. Usón, J. Forniés, M. Tomás, B. Menjón and A.J. Welch, Organometallics, 7 (1988) 1318.
- 29 M. Nardelly, Comput. Chem., 7 (1983) 95.
- 30 K.D. Buse, H.J. Keller and H. Pritzkow, Inorg. Chem., (1977) 1072.
- 31 P.E. Kreter and D.W. Meek, Inorg. Chem., 22 (1983) 319.
- 32 R. Usón, J. Forniés, M. Tomás and R. Fandos, J. Organomet. Chem., 263 (1984) 253.
- 33 R. Usón, J. Forniés, F. Martinez and M. Tomás, J. Chem. Soc., Dalton Trans., (1980) 888.
- 34 R. Usón, J. Forniés, R. Navarro and M.P. García, Inorg. Chim. Acta, 33 (1979) 69.
- 35 N. Walker and D. Stuart, Acta Cryst. A, 39 (1983) 158.